Introduction

Sets and the Real Number System

Sets: Basic Terms and Operations

Definition_(Set)

A set is a well-defined collection of objects. The objects which form a set are called its members or Elements.

Examples:

a) The set of Students in MTH 101C
b) The set of counting numbers less than 10 .

Description of Sets:

There are two ways a set may be described; namely, 1) Listing Method and 2) Set Builder Method.

1) Listing Method: In this method all or partial members of the set are listed.

Examples:

a) Let R be the set of Natural number less than 10 .
$\boldsymbol{R}=\{1,2,3,4,5,6,7,8,9\}$, complete listing
b) Let H be the set of counting numbers less than 1000

$$
H=\{1,2,3, \ldots 999\} \text {, Partial listing }
$$

c) Let \mathbf{N} be the set of Natural Numbers
$N=\{1,2,3, \ldots, \quad$, Partial listing

Definition: (Empty Set)
A set containing no element is called an empty set or a null set. Notations \{ \} or \emptyset denotes empty set.

Example: The set of natural numbers less than 1
2) Set Builder Method: In this method the set is described by listing the properties that describe the elements of the set.

Examples:

a) \mathbf{S} be the set of students in this class, then using set builder S can be describes as

$$
S=\{x \mid x \text { is a student in Math } 1111 \text { class }\}
$$

b) \mathbf{N} be the set of natural numbers

$$
N=\{n \mid n \text { is a natural number }\}
$$

Note: Set-Builder form has two parts

1) A variable $\boldsymbol{x}, \boldsymbol{n}$, etc. representing any elements of the set.
2) A property which defines the elements of the set

A set can be described using the listing or set builder method. For example, consider the set of Natural numbers:
$N=\{1,2,3, . .$.$\} , Partial Listing$
$N=\{n \mid n$ is a natural number $\}$, Set- Builder method
Examples:
Describe the following sets using Listing method (if possible).
a) $P=\{n \mid n$ is a natural number less than 8$\}$
b) $S=\{x \mid x$ is a natural number whose square is less than 25$\}$
c) $R=\{x \mid x$ is a real number between 0 and 2$\}$

Notations: If a is an element of a set S, we write $a \in S$.
If a is not an element of a set S , we write $a \notin S$.
Examples:
Let $S=\{1,2,3,4,5,6,7,8,9\}$, then $9 \in S$ and $0 \notin S$.

Definition: (Equal Sets)

Two sets are said to be equal if they contain the same elements.

Examples:

a) $A=\{a, b, c, d\}$ and $B=\{d, b, c, a\}$ are equal sets
b) Let, $\boldsymbol{M}=$ The set of natural numbers 1 through 100 and
$\boldsymbol{P}=$ The set of counting numbers less than 101.
\boldsymbol{M} and \boldsymbol{P} are equal sets

Subsets

Definition: (Subset)
A set \mathbf{A} is said to be a subset of a set \mathbf{B} if every element of set \mathbf{A} is also an element of set \mathbf{B}.

Examples:

1) Let $A=\{1,2,3\}$ and $B=\{a, 1,2,3\}$. Since every element of set A is also in B A is a subset of B
Notation: $\boldsymbol{A} \subseteq \boldsymbol{B}$ means \mathbf{A} is a subset of \mathbf{B}
2) Let $D=\{0,1,2,3,4,5,6, a, b, c, d, e, g\}$. Answer the following as True or False.
a) $\{0, g\} \subseteq D$
b) $\{0,1,3, a\} \subseteq D$
c) $\{0,1,6, a, f\} \subseteq D$
3) Let $N=\{1,2,3, \ldots\}, B=\{n \mid n$ is an odd natural number $\}$, and $C=\{x \mid x$ is a prime number $\}$. Answer True or False
a) $B \subseteq C$
b) $N \subseteq B$
c) $B \subseteq N$
d) $C \subseteq N$

Pictorial Representation of a Set: Venn Diagrams

Pictorially, a non-empty set is represented by a circle-like closed figure inside a bigger rectangle. This is called a Venn diagram. See fig below

Some properties of subset:

a) Empty set is a subset of any set, that is $\} \subseteq \boldsymbol{A}$ for any set \mathbf{A}; thus $\} \subseteq\}$
b) Any set is a subset of itself, that is for any set $\mathbf{A}, \boldsymbol{A} \subseteq \boldsymbol{A}$
c) $\mathbf{A}=\mathbf{B}$, if and only if $\boldsymbol{A} \subseteq \boldsymbol{B}$ and $\boldsymbol{B} \subseteq \boldsymbol{A}$

Operation on Sets

There are three types of set operations; Intersection denoted by \cap, union denoted by \cup, and complementation.

Definitions: Let A and be sets

1) The union of \mathbf{A} and \mathbf{B} is denoted by $\boldsymbol{A} \cup \boldsymbol{B}$ and is defined as the set of all elements that are in A or B. That is: $\cup \boldsymbol{B}=\{\boldsymbol{x}: \boldsymbol{x} \in \boldsymbol{A}$ or $\boldsymbol{x} \in \boldsymbol{B}\}$.
2) The intersection of \mathbf{A} and \mathbf{B} is denoted by $\boldsymbol{A} \cap \boldsymbol{B}$ and is defined as the set of all elements that are in A and B. That is: $\cap \boldsymbol{B}=\{\boldsymbol{x}: \boldsymbol{x} \in \boldsymbol{A}$ and $\boldsymbol{x} \in \boldsymbol{B}\}$.
3) The Complement of \boldsymbol{B} in \mathbf{A} is denoted by $\boldsymbol{A}-\boldsymbol{B}$ or $\boldsymbol{A} \backslash \boldsymbol{B}$ and is defined as the set of all elements that are in \mathbf{A} but not in \mathbf{B}. That is: $\boldsymbol{A} \backslash \boldsymbol{B}=\{\boldsymbol{x}: \boldsymbol{x} \in \boldsymbol{A}$ and $\boldsymbol{x} \notin \boldsymbol{B}\}$.
4) The absolute complement of set \mathbf{A} denoted by \boldsymbol{A}^{\prime} and is defined by:

$$
A^{\prime}=\{x: x \in U \text { and } x \notin A\} \text {, here } \mathrm{U} \text { is the universal set }
$$

Examples: Venn Diagrams

The Universal Set is represented by a rectangle. The shaded regions represent, respectively, the union, intersection and complement of the sets \boldsymbol{A} and \boldsymbol{B}.
a) $\boldsymbol{A} \cup B$

b) $A \cap B$

c) $A-B$

d) A^{\prime}

Examples 1: Let A, B, and C be sets given as follows

$$
\begin{aligned}
\boldsymbol{A} & =\{-3,-1,1,3,5,7\} \\
\boldsymbol{B} & =\{x: x \text { is an even natural number less than } 6\} \\
\boldsymbol{C} & =A \text { set consisting of squares of the first two natural numbers }
\end{aligned}
$$

Compute: a) $A \cup B$
b) $A \cap B$
c) $A-B$
d) $B-C$
e) $(A \cup B) \cup C$
f) $A-(B \cup C)$
g) $(A \cap B) \cup C$

The Real Number System

The Set of Real Numbers \mathbf{R} is made up two disjoint set of Numbers:

- The Set of Rational Numbers and
- The Set of Irrational Numbers

The Rational Numbers

Definition: (Rational Numbers)

A Rational Number is a number that can be written in the form $\boldsymbol{a} / \boldsymbol{b} ; \boldsymbol{a}$ and \boldsymbol{b} integers, $\boldsymbol{b} \neq \mathbf{0}$. In other words, a Rational Number is a number the can be written in a fraction form

Examples: Rational Numbers
a) $-5,11,5 / 4,22 / 7,111 / 87,0,-121,-1 / 3,1 / 3$, etc.
b) $0.333 \ldots, 5.33,-3.65,0.242424 \ldots=0 . \overline{24}, 3.612612612 \ldots=3 . \overline{612}$, etc.

Decimal Representation of a Rational Number

A Rational Number has a decimal representation that either terminates or repeats.
Example 1: Decimal Numbers
a) $23=23.0 \quad$ Terminating decimal
b) 1.253 Terminating decimal
c) $1.333 \ldots$ Repeating Decimal
d) $3.612612612 \ldots=3 . \overline{612} \quad$ Repeating Decimal
e) Any integer is a rational number

Example 2: Write the following numbers in fraction form
a) 1.33
b) $1.333 \ldots$
c) -2.455
d) $3 . \overline{612}$
e) $0 . \overline{12}$

Definition: (Irrational Numbers)

An Irrational Number is a number that cannot be written in the form $\boldsymbol{a} / \boldsymbol{b} ; \boldsymbol{a}$ and \boldsymbol{b} integers, $\boldsymbol{b} \neq \mathbf{0}$. An Irrational Number Cannot be written in a fraction form

Example 3: Examples of Irrational numbers
a) $1.01001000100001 \ldots$
b) $0.12345 .$.
c) $\mathbf{- 4 . 1 1 0 1 1 1 0 1 1 1 1 0 . . . ~}$
d) π
e) $\sqrt{2}$
f) e
g) $\sqrt[3]{7}$

Decimal Representation of an Irrational Number
An Irrational Number has a decimal representation that neither terminates nor repeats

Example 4:

a) $\sqrt{2}=1.41421356237 \ldots$
b) $-4.110111011110 \ldots$
c) $e=2.71828182845 \ldots$
d) $\pi=3.14159265358 \ldots$

Example 5: Show that $\sqrt{2}$ cannot be written as a fraction.

Important Notations of Set of Numbers
\mathbb{R} - Denotes the set of Real numbers
\mathbb{Q} - Denotes the set of Rational numbers
\mathbb{Z} - Denotes the set of Integers
\mathbb{W} - Denotes the set of Whole numbers
\mathbb{Z} - Denotes the set of Natural numbers

Summary Chart of the Number Systems

