Introduction

Sets and the Real Number System

Sets: Basic Terms and Operations

Definition(Set)

A set is a **well-defined** collection of objects. The objects which form a set are called its **members or Elements.**

Examples:

- a) The set of Students in MTH 101C
- b) The set of counting numbers less than 10.

Description of Sets:

There are two ways a set may be described; namely, 1) Listing Method and 2) Set Builder Method.

1) Listing Method: In this method all or partial members of the set are listed.

Examples:

- a) Let R be the set of Natural number less than 10.
 - $R = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, complete listing
- b) Let H be the set of counting numbers less than 1000 $H = \{1, 2, 3, \ldots, 999\}$, Partial listing
- c) Let **N** be the set of Natural Numbers $N = \{1, 2, 3, ...\}$, Partial listing

Definition: (Empty Set)

A set containing no element is called an **empty set** or a **null set**. Notations $\{ \}$ *or* \emptyset denotes empty set.

Example: The set of natural numbers less than 1

2) Set Builder Method: In this method the set is described by listing the properties that describe the elements of the set.

Examples:

a) S be the set of students in this class, then using set builder S can be describes as

$S = \{ x \mid x \text{ is a student in Math 1111 class } \}$

- b) **N** be the set of natural numbers
 - $N = \{ n \mid n \text{ is a natural number} \}$

Note: Set-Builder form has two parts

- 1) A variable *x*, *n*, *etc*. representing **any elements** of the set.
- 2) A property which defines the elements of the set

A set can be described using the listing or set builder method. For example, consider the set of Natural numbers:

 $N = \{1, 2, 3, \ldots \}$, **Partial Listing**

 $N = \{n \mid n \text{ is a natural number }\}, \text{ Set- Builder method}$

Examples:

Describe the following sets using Listing method (if possible).

a) $P = \{n \mid n \text{ is a natural number less than 8} \}$

b) $S = \{x \mid x \text{ is a natural number whose square is less than 25}\}$

c) $R = \{x \mid x \text{ is a real number between 0 and 2} \}$

Notations: If *a* is an element of a set S, we write $a \in S$.

If *a* is not an element of a set S, we write $a \notin S$.

Examples:

Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, then $9 \in S$ and $0 \notin S$.

Definition: (Equal Sets)

Two sets are said to be equal if they contain the same elements.

Examples:

- a) $A = \{a, b, c, d\}$ and $B = \{d, b, c, a\}$ are equal sets
- b) Let, M = The set of natural numbers 1 through 100 and
 - P = The set of counting numbers less than 101.

M and **P** are equal sets

Subsets

Definition: (Subset)

A set **A** is said to be a subset of a set **B** if every element of set **A** is also an element of set **B**.

Examples:

- 1) Let $A = \{1, 2, 3\}$ and $B = \{a, 1, 2, 3\}$. Since every element of set A is also in B A is a subset of B Notation: $A \subseteq B$ means A is a subset of B
- 2) Let D = { 0, 1, 2, 3, 4, 5, 6, a, b, c, d, e, g }. Answer the following as True or False.
 a) {0, g } ⊆ D
 b) {0, 1, 3, a } ⊆ D
 c) {0, 1, 6, a, f } ⊆ D
- 3) Let N = {1, 2, 3, ...}, B = {n | n is an odd natural number }, and
 C = {x | x is a prime number }. Answer True or False
 a) B ⊆ C b) N ⊆ B c) B ⊆ N d) C ⊆ N

Pictorial Representation of a Set: Venn Diagrams

Pictorially, a non-empty set is represented by a **circle-like closed figure** inside a **bigger rectangle**. This is called a **Venn diagram. See fig below**

Some properties of subset:

- a) **Empty set** is a **subset** of **any set**, that is $\{\} \subseteq A$ for any set A; thus $\{\} \subseteq \{\}$
- b) Any set is a subset of itself, that is for any set A, $A \subseteq A$
- c) $\mathbf{A} = \mathbf{B}$, if and only if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{B} \subseteq \mathbf{A}$

Operation on Sets

There are three types of set operations; **Intersection** denoted by \cap , **union** denoted by \cup , and **complementation**.

Definitions: Let A and be sets

- 1) The union of A and B is denoted by $A \cup B$ and is defined as the set of all elements that are in A or B. That is: $\cup B = \{x : x \in A \text{ or } x \in B\}$.
- 2) The intersection of A and B is denoted by $A \cap B$ and is defined as the set of all elements that are in A and B. That is: $\cap B = \{x : x \in A \text{ and } x \in B\}$.
- 3) The Complement of B in A is denoted by A B or $A \setminus B$ and is defined as the set of all elements that are in A but not in B. That is: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$.
- 4) The **absolute complement** of set **A** denoted by **A**' and is defined by:

 $A' = \{ x : x \in U \text{ and } x \notin A \}$, here U is the universal set

Examples: Venn Diagrams

The Universal Set is represented by a rectangle. The shaded regions represent, respectively, the union, intersection and complement of the sets *A* and *B*.

Examples 1: Let A, B, and C be sets given as follows

 $A = \{-3, -1, 1, 3, 5, 7\}$

 $B = \{ x : x \text{ is an even natural number less than } 6 \}$

C = A set consisting of squares of the first two natural numbers

Compute: a) $A \cup B$	b) <i>A</i> ∩ <i>B</i>	c) <i>A</i> – <i>B</i>	d) <i>B</i> – <i>C</i>
e) $(A \cup B) \cup C$		$\mathbf{f})\mathbf{A} - (\mathbf{B} \cup \mathbf{C})$	$\mathbf{g}) \left(\boldsymbol{A} \cap \boldsymbol{B} \right) \cup \boldsymbol{C}$

The Real Number System

The Set of Real Numbers **R** is made up **two** disjoint set of Numbers:

- The **Set of Rational Numbers** and
- The Set of Irrational Numbers

The Rational Numbers

Definition: (Rational Numbers)

A Rational Number is a number that can be written in the form a/b; a and b integers, $b \neq 0$. In other words, a Rational Number is a number the can be written in a fraction form

Examples: Rational Numbers

a) -5, 11, 5/4, 22/7, 111/87, 0, -121, -1/3, 1/3, etc.

b) 0.333..., 5.33, -3.65, 0.242424... = $0.\overline{24}$, 3.612612612...= $3.\overline{612}$, etc.

Decimal Representation of a Rational Number

A Rational Number has a **decimal representation** that either **terminates** or **repeats**.

Example 1: Decimal Numbers

- a) 23 = 23.0 Terminating decimal
- b) 1.253 Terminating decimal
- c) 1.333... Repeating Decimal
- d) $3.612612612...= 3.\overline{612}$ Repeating Decimal
- e) Any integer is a rational number

Example 2: Write the following numbers in fraction form

- a) 1.33
- b) 1.333...
- c) -2.455
- d) $3.\overline{612}$
- e) $0.\overline{12}$

Definition: (Irrational Numbers)

An Irrational Number is a number that cannot be written in the form a/b; a and b integers, $b \neq 0$. An Irrational Number Cannot be written in a fraction form Example 3: Examples of Irrational numbers

- a) 1.01001000100001...
- b) 0.12345...
- c) -4.110111011110...
- **d**) π
- e) $\sqrt{2}$
- f) **e**
- g) ³√7

Decimal Representation of an Irrational Number

An Irrational Number has a decimal representation that neither terminates nor repeats

Example 4:

- a) $\sqrt{2} = 1.41421356237...$
- b) -4.110111011110...
- c) e = 2.71828182845...
- d) $\pi = 3.14159265358 \dots$

Example 5: Show that $\sqrt{2}$ cannot be written as a fraction.

Important Notations of Set of Numbers

- $\mathbb R$ Denotes the set of Real numbers
- $\mathbb Q$ Denotes the set of Rational numbers
- $\mathbb Z$ Denotes the set of Integers
- W– Denotes the set of Whole numbers
- $\mathbb Z$ Denotes the set of Natural numbers

Summary Chart of the Number Systems

